Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 8.775
1.
Clin Transl Sci ; 17(5): e13819, 2024 May.
Article En | MEDLINE | ID: mdl-38747478

The equivalence of absorption rates and extents between generic drugs and their reference formulations is crucial for ensuring therapeutic comparability. Bioequivalence (BE) studies are widely utilized and play a pivotal role in substantiating the approval and promotional efforts for generic drugs. Virtual BE simulation is a valuable tool for mitigating risks and guiding clinical BE studies, thereby minimizing redundant in vivo BE assessments. Herein, we successfully developed a physiologically based absorption model for virtual BE simulations, which precisely predicts the BE of the apixaban test and reference formulations. The modeling results confirm that the test and reference formulations were bioequivalent under both fasted and fed conditions, consistent with clinical studies. This highlights the efficacy of physiologically based absorption modeling as a powerful tool for formulation screening and can be adopted as a methodological and risk assessment strategy to detect potential clinical BE risks.


Models, Biological , Pyrazoles , Pyridones , Therapeutic Equivalency , Pyridones/pharmacokinetics , Pyridones/administration & dosage , Pyrazoles/pharmacokinetics , Pyrazoles/administration & dosage , Humans , Factor Xa Inhibitors/pharmacokinetics , Factor Xa Inhibitors/administration & dosage , Drugs, Generic/pharmacokinetics , Drugs, Generic/administration & dosage , Computer Simulation , Administration, Oral , Male
2.
AAPS PharmSciTech ; 25(5): 100, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714602

Physiologically based pharmacokinetic (PBPK) modeling is a mechanistic concept, which helps to judge the effects of biopharmceutical properties of drug product such as in vitro dissolution on its pharmacokinetic and in vivo performance. With the application of virtual bioequivalence (VBE) study, the drug product development using model-based approach can help in evaluating the possibility of extending BCS-based biowaiver. Therefore, the current study was intended to develop PBPK model as well as in vitro in vivo extrapolation (IVIVE) for BCS class III drug i.e. cefadroxil. A PBPK model was created in GastroPlus™ 9.8.3 utilizing clinical data of immediate-release cefadroxil formulations. By the examination of simulated and observed plasma drug concentration profiles, the predictability of the proposed model was assessed for the prediction errors. Furthermore, mechanistic deconvolution was used to create IVIVE, and the plasma drug concentration profiles and pharmacokinetic parameters were predicted for different virtual formulations with variable cefadroxil in vitro release. Virtual bioequivalence study was also executed to assess the bioequivalence of the generic verses the reference drug product (Duricef®). The developed PBPK model satisfactorily predicted Cmax and AUC0-t after cefadroxil single and multiple oral dose administrations, with all individual prediction errors within the limits except in a few cases. Second order polynomial correlation function obtained accurately predict in vivo drug release and plasma concentration profile of cefadroxil test and reference (Duricef®) formulation. The VBE study also proved test formulation bioequivalent to reference formulation and the statistical analysis on pharmacokinetic parameters reported 90% confidence interval for Cmax and AUC0-t in the FDA acceptable limits. The analysis found that a validated and verified PBPK model with a mechanistic background is as a suitable approach to accelerate generic drug development.


Cefadroxil , Models, Biological , Therapeutic Equivalency , Cefadroxil/pharmacokinetics , Cefadroxil/administration & dosage , Humans , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Capsules/pharmacokinetics , Drug Liberation , Male , Adult , Drugs, Generic/pharmacokinetics , Drugs, Generic/administration & dosage , Computer Simulation , Young Adult , Administration, Oral
3.
Eur J Drug Metab Pharmacokinet ; 49(3): 383-392, 2024 May.
Article En | MEDLINE | ID: mdl-38564097

BACKGROUND AND OBJECTIVE: GB221 is a recombinant humanized anti-HER2 monoclonal antibody. The purpose of this study was to evaluate the pharmacokinetic, safety, and immunogenicity of GB221 in healthy Chinese adults in comparison to trastuzumab (Herceptin®). METHODS: In this randomized, double-blind, parallel-group phase I clinical trial, 88 subjects were randomized 1:1 to receive a single intravenous infusion (90-100 min) of GB221 or trastuzumab (6 mg/kg). The primary pharmacokinetic parameters-maximum observed serum concentration (Cmax), area under the serum concentration-time curve from zero to the last quantifiable concentration at time t (AUC0-t), and area under the serum concentration-time curve from time zero to infinity (AUC0-∞)-of GB221 and trastuzumab were compared to establish whether the 90% confidence interval (CI) attained the 80-125% bioequivalence standard. Safety and immunogenicity were also evaluated. RESULTS: The GB221 group (n = 43) and the trastuzumab group (n = 44) showed similar pharmacokinetic characteristics. The geometric mean ratios (90% CI) of Cmax, AUC0-t, and AUC0-∞ between the two groups were 107.53% (102.25-113.07%), 108.31% (103.57-113.26%), and 108.34% (103.57-113.33%), respectively. The incidence of treatment-emergent adverse events (TEAEs) was 83.7% (36/43) of the subjects in the GB221 group and 95.5% (42/44) of the subjects in the trastuzumab group. No subjects withdrew from the trial due to TEAEs, and there were no occurrences of serious adverse events. All subjects tested negative for antidrug antibodies (ADA). CONCLUSION: GB221 demonstrated similar pharmacokinetics to trastuzumab and comparable safety and immunogenicity in healthy Chinese adults.


Antineoplastic Agents, Immunological , Area Under Curve , Therapeutic Equivalency , Trastuzumab , Humans , Trastuzumab/pharmacokinetics , Trastuzumab/administration & dosage , Trastuzumab/adverse effects , Adult , Male , Double-Blind Method , Female , Young Adult , Antineoplastic Agents, Immunological/pharmacokinetics , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/adverse effects , Asian People , Infusions, Intravenous , Middle Aged , Healthy Volunteers , Receptor, ErbB-2/immunology , East Asian People
4.
AAPS J ; 26(3): 56, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38671158

Advair Diskus is an essential treatment for asthma and chronic obstructive pulmonary disease. It is a dry powder inhaler with a combination of fluticasone propionate (FP) and salmeterol xinafoate (SX). However, the pharmacokinetics (PK) batch-to-batch variability of the reference-listed drug (RLD) hindered its generic product development. This work developed the PK models for inhaled FP and SX that could represent potential batch variability. Two batches each of the reference and the test product (R1, R2, T1, T2) of Advair Diskus (100 µg FP/50 µg SX inhalation) were administered to 60 healthy subjects in a 4-period, 4-sequence crossover study. The failure of the bioequivalence (BE) between R1 and R2 confirmed the high between-batch variability of the RLD. Non-linear mixed effect modeling was used to estimate the population mean PK parameters for each batch. For FP, a 2-compartment model with a sequential dual zero-order absorption best described the PK profile. For SX, a 2-compartment model with a first-order absorption model best fit the data. Both models were able to capture the plasma concentration, the maximum concentration, and the total exposure (AUCinf) adequately for each batch, which could be used to simulate the BE study in the future. In vitro properties were also measured for each batch, and the batch with a higher fraction of the fine particle (diameter < 1 µm, < 2 µm) had a higher AUCinf. This positive correlation for both FP and SX could potentially assist the batch selection for the PK BE study.


Bronchodilator Agents , Cross-Over Studies , Dry Powder Inhalers , Fluticasone-Salmeterol Drug Combination , Models, Biological , Therapeutic Equivalency , Humans , Administration, Inhalation , Male , Adult , Fluticasone-Salmeterol Drug Combination/pharmacokinetics , Fluticasone-Salmeterol Drug Combination/administration & dosage , Young Adult , Bronchodilator Agents/pharmacokinetics , Bronchodilator Agents/administration & dosage , Bronchodilator Agents/blood , Female , Middle Aged , Fluticasone/pharmacokinetics , Fluticasone/administration & dosage , Salmeterol Xinafoate/pharmacokinetics , Salmeterol Xinafoate/administration & dosage , Healthy Volunteers
5.
BMC Med Res Methodol ; 24(1): 82, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38580928

BACKGROUND: This retrospective analysis aimed to comprehensively review the design and regulatory aspects of bioequivalence trials submitted to the Saudi Food and Drug Authority (SFDA) since 2017. METHODS: This was a retrospective, comprehensive analysis study. The Data extracted from the SFDA bioequivalence assessment reports were analyzed for reviewing the overall design and regulatory aspects of the successful bioequivalence trials, exploring the impact of the coefficient of variation of within-subject variability (CVw) on some design aspects, and providing an in-depth assessment of bioequivalence trial submissions that were deemed insufficient in demonstrating bioequivalence. RESULTS: A total of 590 bioequivalence trials were included of which 521 demonstrated bioequivalence (440 single active pharmaceutical ingredients [APIs] and 81 fixed combinations). Most of the successful trials were for cardiovascular drugs (84 out of 521 [16.1%]), and the 2 × 2 crossover design was used in 455 (87.3%) trials. The sample size tended to increase with the increase in the CVw in trials of single APIs. Biopharmaceutics Classification System Class II and IV drugs accounted for the majority of highly variable drugs (58 out of 82 [70.7%]) in the study. Most of the 51 rejected trials were rejected due to concerns related to the study center (n = 21 [41.2%]). CONCLUSION: This comprehensive analysis provides valuable insights into the regulatory and design aspects of bioequivalence trials and can inform future research and assist in identifying opportunities for improvement in conducting bioequivalence trials in Saudi Arabia.


Drugs, Generic , Humans , Therapeutic Equivalency , Drugs, Generic/therapeutic use , Saudi Arabia , Retrospective Studies , Sample Size
6.
Clin Transl Sci ; 17(4): e13775, 2024 Apr.
Article En | MEDLINE | ID: mdl-38651744

This study aimed to evaluate the pharmacokinetics (PKs), safety, and immunogenicity of the biosimilar HEC14028 compared to reference Trulicity® (dulaglutide) in healthy male Chinese subjects. This study was a single-center, randomized, open, single-dose, parallel-controlled comparative Phase I clinical trial, including a screening period of up to 14 days, a 17-day observation period after administration, and a 7-day safety follow-up period. A total of 68 healthy male subjects were randomly assigned (1:1) to the test group (HEC14028) and the reference group (dulaglutide) (single 0.75 mg abdominal subcutaneous dose). The primary objective was to evaluate the pharmacokinetic characteristics of HEC14028 and compare the pharmacokinetic similarities between HEC14028 and dulaglutide. The primary PK endpoints were maximum plasma concentration (Cmax) and area under the blood concentration-time curve from zero time to the estimated infinite time (AUC0-∞). The study results showed that HEC14028 and dulaglutide were pharmacokinetically equivalent: 90% confidence interval (CI) of Cmax and AUC0-∞ geometric mean ratios were 102.9%-122.0% and 97.1%-116.9%, respectively, which were both within the range of 80.00%-125.00%. No grade 3 or above treatment emergent adverse events (TEAEs), serious adverse events (SAEs), TEAEs leading to withdrawal from the trial, or TEAEs leading to death were reported in this study. Both HEC14028 and dulaglutide showed good and similar safety profiles, and no incremental immunogenicity was observed in subjects receiving HEC14028 and dulaglutide.


Biosimilar Pharmaceuticals , Glucagon-Like Peptides , Glucagon-Like Peptides/analogs & derivatives , Healthy Volunteers , Immunoglobulin Fc Fragments , Recombinant Fusion Proteins , Humans , Male , Immunoglobulin Fc Fragments/administration & dosage , Immunoglobulin Fc Fragments/adverse effects , Immunoglobulin Fc Fragments/immunology , Glucagon-Like Peptides/pharmacokinetics , Glucagon-Like Peptides/administration & dosage , Glucagon-Like Peptides/adverse effects , Recombinant Fusion Proteins/pharmacokinetics , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/adverse effects , Biosimilar Pharmaceuticals/pharmacokinetics , Biosimilar Pharmaceuticals/administration & dosage , Biosimilar Pharmaceuticals/adverse effects , Adult , Young Adult , China , Area Under Curve , Asian People , Therapeutic Equivalency , Injections, Subcutaneous , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/adverse effects , Middle Aged , Adolescent , East Asian People
7.
AAPS J ; 26(3): 45, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38589695

The 2023 Generic Drug Science and Research Initiative Public Workshop organized by the U.S. Food and Drug Administration (FDA) discussed the research needs to improve and enhance bioequivalence (BE) approaches for generic drug development. FDA takes such research needs and panel discussions into account to develop its Generic Drug User Fee Amendments III (GDUFA III) Science and Research Initiatives specific to generics. During the five workshop sessions, presentations and panel discussions focused on identifying and addressing scientific gaps and research needs related to nitrosamine impurity issues, BE assessment for oral products, innovative BE approaches for long-acting injectable products, alternative BE approaches for orally inhaled products, and advanced BE methods for topical products. Specifically, this report highlights the discussions on how to improve BE assessment for developing generic drug products based on research priorities for leveraging quantitative methods and modeling, as well as artificial intelligence/machine learning (AI/ML).


Artificial Intelligence , Drugs, Generic , United States , Therapeutic Equivalency , Drug Development , United States Food and Drug Administration
8.
Mol Pharm ; 21(5): 2065-2080, 2024 May 06.
Article En | MEDLINE | ID: mdl-38600804

Physiologically based biopharmaceutics modeling (PBBM) is used to elevate drug product quality by providing a more accurate and holistic understanding of how drugs interact with the human body. These models are based on the integration of physiological, pharmacological, and pharmaceutical data to simulate and predict drug behavior in vivo. Effective utilization of PBBM requires a consistent approach to model development, verification, validation, and application. Currently, only one country has a draft guidance document for PBBM, whereas other major regulatory authorities have had limited experience with the review of PBBM. To address this gap, industry submitted confidential PBBM case studies to be reviewed by the regulatory agencies; software companies committed to training. PBBM cases were independently and collaboratively discussed by regulators, and academic colleagues participated in some of the discussions. Successful bioequivalence "safe space" industry case examples are also presented. Overall, six regulatory agencies were involved in the case study exercises, including ANVISA, FDA, Health Canada, MHRA, PMDA, and EMA (experts from Belgium, Germany, Norway, Portugal, Spain, and Sweden), and we believe this is the first time such a collaboration has taken place. The outcomes were presented at this workshop, together with a participant survey on the utility and experience with PBBM submissions, to discuss the best scientific practices for developing, validating, and applying PBBMs. The PBBM case studies enabled industry to receive constructive feedback from global regulators and highlighted clear direction for future PBBM submissions for regulatory consideration.


Biopharmaceutics , Drug Industry , Humans , Biopharmaceutics/methods , Drug Industry/methods , Models, Biological , Therapeutic Equivalency , Pharmaceutical Preparations/chemistry , United States
9.
Diabetes Obes Metab ; 26(6): 2412-2421, 2024 Jun.
Article En | MEDLINE | ID: mdl-38558508

AIM: To evaluate the equivalence of immunogenicity, safety and efficacy of Gan & Lee (GL) Glargine (Basalin®; Gan & Lee Pharmaceutical) with that of the reference product (Lantus®) in adult participants with type 2 diabetes mellitus. METHODS: This was a phase 3, multicenter, open-label, equivalence trial conducted across 57 sites. In total, 567 participants with type 2 diabetes mellitus were randomized in a 1:1 ratio to undergo treatment with either GL Glargine or Lantus® for 26 weeks. The primary endpoint was the proportion of participants in each treatment arm who manifested treatment-induced anti-insulin antibodies (AIA). Secondary endpoints included efficacy and safety metrics, changes in glycated haemoglobin levels, and a comparative assessment of adverse events. Results were analysed using an equivalence test comparing the limits of the 90% confidence interval (CI) for treatment-induced AIA development to the prespecified margins. RESULTS: The percentages of participants positive for treatment-induced glycated haemoglobin by week 26 were similar between the GL Glargine (19.2%) and Lantus® (21.3%) treatment groups, with a treatment difference of -2.1 percentage points and a 90% CI (-7.6%, 3.5%) (predefined similarity margins: -10.7%, 10.7%). The difference in glycated haemoglobin was -0.08% (90% CI, -0.23, 0.06). The overall percentage of participants with any treatment-emergent adverse events was similar between the GL Glargine (80.1%) and Lantus® (81.6%) treatment groups. CONCLUSIONS: GL Glargine was similar to Lantus® in terms of immunogenicity, efficacy, and safety, based on the current study.


Biosimilar Pharmaceuticals , Diabetes Mellitus, Type 2 , Glycated Hemoglobin , Hypoglycemic Agents , Insulin Glargine , Humans , Insulin Glargine/therapeutic use , Insulin Glargine/adverse effects , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/immunology , Male , Female , Middle Aged , Biosimilar Pharmaceuticals/therapeutic use , Biosimilar Pharmaceuticals/adverse effects , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/adverse effects , Glycated Hemoglobin/drug effects , Glycated Hemoglobin/metabolism , Glycated Hemoglobin/analysis , Aged , Treatment Outcome , Insulin Antibodies/blood , Adult , Blood Glucose/drug effects , Blood Glucose/metabolism , Therapeutic Equivalency , Hypoglycemia/chemically induced
10.
J Pharm Pharm Sci ; 27: 12398, 2024.
Article En | MEDLINE | ID: mdl-38577255

Bioequivalence (BE) studies are considered the standard for demonstrating that the performance of a generic drug product in the human body is sufficiently similar to that of its comparator product. The objective of this article is to describe the recommendations from participating Bioequivalence Working Group for Generics (BEWGG) members of the International Pharmaceutical Regulators Programme (IPRP) regarding the conduct and acceptance criteria for BE studies of immediate release solid oral dosage forms. A survey was conducted among BEWGG members regarding their BE recommendations and requirements related to study subjects, study design, sample size, single or multiple dose administration, study conditions (fasting or fed), analyte to be measured, selection of product strength, drug content, handling of endogenous substances, BE acceptance criteria, and additional design aspects. All members prefer conducting single dose cross-over designed studies in healthy subjects with a minimum of 12 subjects and utilizing the parent drug data to assess BE. However, differences emerged among the members when the drug's pharmacokinetics and pharmacodynamics become more complex, such that the study design (e.g., fasting versus fed conditions) and BE acceptance criteria (e.g., highly variable drugs, narrow therapeutic index drugs) may be affected. The survey results and discussions were shared with the ICH M13 Expert Working Group (EWG) and played an important role in identifying and analyzing gaps during the harmonization process. The draft ICH M13A guideline developed by the M13 EWG was endorsed by ICH on 20 December 2022, under Step 2.


Drugs, Generic , Research Design , Humans , Therapeutic Equivalency
11.
Int J Pharm ; 656: 124012, 2024 May 10.
Article En | MEDLINE | ID: mdl-38537923

Over the past decade, topically applied drug products have experienced extraordinary price increases, due to the shortage of multisource generic drug products. This occurrence is mainly related to the underlying challenges evolved in topical bioequivalence documentation. Although there has been continuing regulatory efforts to present surrogate in vitro methods to clinical endpoint studies, there is still a continued need for cost- and time-efficient alternatives that account for product specificities. Hence, this work intended to expose bioequivalence assessment issues for complex topical formulations, and more specifically those related with product efficacy guidance. As a model drug and product, a bifonazole 10 mg/g cream formulation was selected and two different batches of the commercially available Reference Product (RP) were used: RP1 that displayed lower viscosity and RP4 which presented high, but not the highest, viscosity. In vitro human skin permeation testing (IVPT) was carried out and the results were evaluated by means of the traditional bioequivalence assessment approach proposed by the EMA, as well as by the Scaled Average Bioequivalence assessment approach proposed by the FDA. Based on previous experience, there was an expectation of a high level of variability in the results, thus alternative methods to evaluate local drug skin availability were developed. More specifically, an infected skin disease model, where ex vivo human skin was infected and ATP levels were used as a biological marker for monitoring antifungal activity after product application. The results showed that permeation equivalence could not be supported between the different RP batches. In contrast, this statistical difference between the formulation batches was not indicated in the disease model. Nevertheless, in pivotal IVPT studies, the lowest permeant formulation (RP4) evidenced a higher antifungal in vitro activity as reported by the lower levels of ATP. A critical appraisal of the results is likewise presented, focusing on an outlook of the real applicability of the regulatory guidances on this subject.


Antifungal Agents , Skin Absorption , Skin , Therapeutic Equivalency , Humans , Antifungal Agents/pharmacokinetics , Antifungal Agents/administration & dosage , Skin/metabolism , Administration, Cutaneous , Viscosity , In Vitro Techniques , Skin Cream/pharmacokinetics , Skin Cream/administration & dosage
12.
Epilepsy Res ; 202: 107350, 2024 May.
Article En | MEDLINE | ID: mdl-38513537

OBJECTIVES: Assess the bioequivalence of lacosamide extended-release (XR) capsules and immediate-release (IR) tablets and answer real-world clinical questions regarding the use of lacosamide XR. METHODS: An open-label, randomized, two-treatment, two-sequence, oral comparative bioavailability study was conducted to assess the bioequivalence of two lacosamide formulations. Participants were randomized 1:1 to receive lacosamide XR capsules (400 mg once-daily) or IR tablets (200 mg twice-daily) in 1 of 2 sequences over 7-day periods. Primary outcome was the area under the lacosamide concentration-time curve over 24 h at steady-state (AUC0-τ,ss). Secondary outcomes were maximum (Cmax,ss) and minimum concentrations at steady-state (Cmin,ss). Bioequivalence was established when 90% confidence intervals (CIs) for geometric least square means ratios (GLSMs) were between 80% and 125%. Adverse events (AEs) and other safety outcomes were also assessed. Pharmacokinetic simulations, including adherent and partially adherent dosing scenarios with XR and IR formulations, modeled the clinical use of lacosamide XR. RESULTS: Thirty-five healthy adult males were enrolled in the bioequivalence study. After 7 days of study drug, mean AUC0-τ,ss, Cmax,ss, and Cmin,ss values were similar between XR and IR formulations; all 90% CIs for GLSMs were between 80% and 125%. AEs were mild and no serious AEs or other clinically significant safety findings were observed. Pharmacokinetic simulations suggested that partial adherence affected formulations similarly; and the best strategy for switching formulations was to take the morning lacosamide IR dose followed by the evening lacosamide XR dose, as this resulted in the most consistent lacosamide plasma concentrations. CONCLUSIONS: Once-daily lacosamide XR capsules were bioequivalent to twice-daily lacosamide IR tablets. Pharmacokinetic simulations indicated lacosamide XR and IR formulations were similarly affected by partial adherence, though once-daily dosing with lacosamide XR may offer clinical advantages, and formulations can be easily switched. These results support the use of lacosamide XR capsules as a once-daily alternative to lacosamide IR tablets.


Anticonvulsants , Capsules , Delayed-Action Preparations , Lacosamide , Tablets , Therapeutic Equivalency , Humans , Lacosamide/pharmacokinetics , Lacosamide/administration & dosage , Male , Adult , Anticonvulsants/pharmacokinetics , Anticonvulsants/administration & dosage , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/administration & dosage , Young Adult , Female , Middle Aged , Biological Availability , Area Under Curve , Adolescent , Computer Simulation , Administration, Oral
13.
Clin Pharmacokinet ; 63(4): 511-527, 2024 Apr.
Article En | MEDLINE | ID: mdl-38436924

BACKGROUND AND OBJECTIVE: The combination of niraparib and abiraterone acetate (AA) plus prednisone is under investigation for the treatment of patients with metastatic castration-resistant prostate cancer (mCRPC) and metastatic castration-sensitive prostate cancer (mCSPC). Regular-strength (RS) and lower-strength (LS) dual-action tablets (DATs), comprising niraparib 100 mg/AA 500 mg and niraparib 50 mg/AA 500 mg, respectively, were developed to reduce pill burden and improve patient experience. A bioequivalence (BE)/bioavailability (BA) study was conducted under modified fasting conditions in patients with mCRPC to support approval of the DATs. METHODS: This open-label randomized BA/BE study (NCT04577833) was conducted at 14 sites in the USA and Europe. The study had a sequential design, including a 21-day screening phase, a pharmacokinetic (PK) assessment phase comprising three periods [namely (1) single-dose with up to 1-week run-in, (2) daily dose on days 1-11, and (3) daily dose on days 12-22], an extension where both niraparib and AA as single-agent combination (SAC; reference) or AA alone was continued from day 23 until discontinuation, and a 30-day follow-up phase. Patients were randomly assigned in a parallel-group design (four-sequence randomization) to receive a single oral dose of niraparib 100 mg/AA 1000 mg as a LS-DAT or SAC in period 1, and patients continued as randomized into a two-way crossover design during periods 2 and 3 where they received niraparib 200 mg/AA 1000 mg once daily as a RS-DAT or SAC. The design was powered on the basis of crossover assessment of RS-DAT versus SAC. During repeated dosing (periods 2 and 3, and extension phase), all patients also received prednisone/prednisolone 5 mg twice daily. Plasma samples were collected for measurement of niraparib and abiraterone plasma concentrations. Statistical assessment of the RS-DAT and LS-DAT versus SAC was performed on log-transformed pharmacokinetic parameters data from periods 2 and 3 (crossover) and from period 1 (parallel), respectively. Additional paired analyses and model-based bioequivalence assessments were conducted to evaluate the similarity between the LS-DAT and SAC. RESULTS: For the RS-DAT versus SAC, the 90% confidence intervals (CI) of geometric mean ratios (GMR) for maximum concentration at a steady state (Cmax,ss) and area under the plasma concentration-time curve from 0-24 h at a steady state (AUC 0-24h,ss) were respectively 99.18-106.12% and 97.91-104.31% for niraparib and 87.59-106.69 and 86.91-100.23% for abiraterone. For the LS-DAT vs SAC, the 90% CI of GMR for AUC0-72h of niraparib was 80.31-101.12% in primary analysis, the 90% CI of GMR for Cmax,ss and AUC 0-24h,ss of abiraterone was 85.41-118.34% and 86.51-121.64% respectively, and 96.4% of simulated LS-DAT versus SAC BE trials met the BE criteria for both niraparib and abiraterone. CONCLUSIONS: The RS-DAT met BE criteria (range 80%-125%) versus SAC based on 90% CI of GMR for Cmax,ss and AUC 0-24h,ss. The LS-DAT was considered BE to SAC on the basis of the niraparib component meeting the BE criteria in the primary analysis for AUC 0-72h; abiraterone meeting the BE criteria in additional paired analyses based on Cmax,ss and AUC 0-24h,ss; and the percentage of simulated LS-DAT versus SAC BE trials meeting the BE criteria for both. GOV IDENTIFIER: NCT04577833.


Abiraterone Acetate , Indazoles , Piperidines , Prostatic Neoplasms, Castration-Resistant , Tablets , Therapeutic Equivalency , Humans , Indazoles/pharmacokinetics , Indazoles/administration & dosage , Male , Piperidines/pharmacokinetics , Piperidines/administration & dosage , Abiraterone Acetate/pharmacokinetics , Abiraterone Acetate/administration & dosage , Aged , Middle Aged , Prostatic Neoplasms, Castration-Resistant/drug therapy , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Models, Biological , Biological Availability , Cross-Over Studies , Aged, 80 and over , Computer Simulation , Prednisone/pharmacokinetics , Prednisone/administration & dosage
14.
Medicina (Kaunas) ; 60(3)2024 Mar 02.
Article En | MEDLINE | ID: mdl-38541153

Background and Objectives: The enteric form of omeprazole is one of the most commonly prescribed medications. Similarly to Europe, Kazakhstan relies on the localization of pharmaceutical drug production as one of its primary strategies to ensure that its population has access to affordable and good-quality medicines. This study comprehensively describes the technologically available development of bioequivalent delayed-release omeprazole. Materials and Methods: Various regimes and technological parameters were tested on laboratory- and production-scale equipment to establish a technical process where a functional and gastro-protective layer is essential. According to the ICH guidance on stability testing and Kazakhstan local rules, stability studies were conducted under conditions appropriate for climate zone II. The comparison of the rate and extent of absorption with subsequent assessment of the bioequivalence of the generic and reference drugs after a single dose of each drug at a dose of 40 mg was performed. Results: The quantitative and qualitative composition and technology of producing a new generic enteric form of omeprazole in capsules were developed and implemented at the manufacturing site of solid forms. Dissolution profiles in media with pH 1.2 and 6.8 were proven. During the accelerated six-month and long-term twelve-month studies, the developed formulation in both packaging materials at each control point passed the average weight and mass uniformity test, dissolution test, acid-resistance stage test, buffer stage test, impurity assay, and microbiological purity test and met all the specification criteria. A bioequivalence study in 24 healthy volunteers compared against the innovative drug showed the bioequivalency of the new generic system. The obtained values from the test and reference products were 1321 ± 249.0 ng/mL and 1274 ± 233 ng/mL for Cmax, 4521 ± 841 ng·h /mL and 4371 ± 695 ng·h /mL for AUC0-t, and 4636 ± 814 ng·h /mL and 4502 ± 640 ng·h /mL for AUC0-∞. Conclusions: Using affordable technologies, a bioequivalent generic delayed-release formulation of 20 and 40 mg omeprazole has been developed.


Omeprazole , Humans , Omeprazole/chemistry , Therapeutic Equivalency , Capsules , Cross-Over Studies , Europe
15.
Clin Pharmacol Drug Dev ; 13(5): 499-505, 2024 May.
Article En | MEDLINE | ID: mdl-38478175

Nifedipine is a potent antihypertensive medication classified as a dihydropyridine calcium channel blocker. The objective of this trial was to assess the bioequivalence of a 30-mg nifedipine controlled-release tablet and a reference drug in a cohort of healthy Chinese individuals. Two independent open-label, randomized, single-dose, crossover studies were conducted, 1 under fasting conditions (N = 44, with 1 participant dropping out midway) and the other under fed conditions (N = 44, with 4 participants dropping out midway). Plasma concentrations of nifedipine were determined using liquid chromatography-mass spectrometry, and pharmacokinetic (PK) parameters were calculated using noncompartmental analysis with Phoenix WinNonlin 8.0 software. In both fasting and fed studies, reasonable bioequivalence was observed for the PK parameters of both the test product and the reference drug. A good safety profile was demonstrated for both the test product and reference drug, with no serious adverse events reported, and both were similarly well tolerated. An important observation with food coadministration was that systemic exposure to nifedipine (based on area under the curve, AUC0-∞) was reduced by approximately 12%. The bioequivalence of the test product and reference drug under fasting/fed conditions in healthy subjects in China was demonstrated by the study results.


Area Under Curve , Calcium Channel Blockers , Cross-Over Studies , Delayed-Action Preparations , Fasting , Food-Drug Interactions , Nifedipine , Tablets , Therapeutic Equivalency , Humans , Nifedipine/pharmacokinetics , Nifedipine/administration & dosage , Nifedipine/adverse effects , Adult , Male , Female , Young Adult , Calcium Channel Blockers/pharmacokinetics , Calcium Channel Blockers/administration & dosage , Calcium Channel Blockers/adverse effects , Healthy Volunteers , Asian People , China , Middle Aged , Administration, Oral , East Asian People
16.
Clin Transl Sci ; 17(3): e13752, 2024 03.
Article En | MEDLINE | ID: mdl-38511529

Administration of oral medicinal products as crushed tablets or open capsules is an important delivery option for patients suffering from dysphagia. To obtain full interchangeability of generics with the original products, demonstration of bioequivalence (BE) between both products administered as crushed tablets/open capsules was required for poorly soluble product by European Medicines Agency (EMA) at the time of development of our rivaroxaban and deferasirox generic products. We present the results of two BE studies with modified administration of these products, which compared relative bioavailability between generic and reference products. In the rivaroxaban study, the test product was administered as a capsule sprinkled on and mixed with applesauce, whereas the reference tablet was crushed and administered with applesauce under fed conditions. In the deferasirox study, both treatments were administered as crushed tablets under fasting conditions. Both studies applied a two-way crossover design and were conducted after a single-dose in healthy volunteers. The 90% confidence interval of the geometric mean ratio area under the analyte concentration versus time curve, from time zero to the time of the last measurable analyte concentration and maximum measured analyte concentration over the sampling period of the test to reference ratio were 103.36-110.37% and 97.98-108.45% for rivaroxaban, respectively, and 96.69-107.29% and 94.19-109.45% for deferasirox, respectively. Thus, the BE criteria (80.00-125.00%) were met in both studies which demonstrated that bioavailability was not affected when the test and reference products were administered in the form of crushed tablet/open capsule. These results support the argument of redundancy of crushed product studies for poorly soluble drugs, which is in line with the currently revised position of the EMA on this topic.


Drugs, Generic , Rivaroxaban , Humans , Therapeutic Equivalency , Deferasirox , Administration, Oral , Tablets
17.
Clin Transl Sci ; 17(3): e13765, 2024 03.
Article En | MEDLINE | ID: mdl-38511523

PF614, a trypsin-activated abuse protection oxycodone prodrug designed to reduce recreational drug abuse, was compared to OxyContin for safety and pharmacokinetics (PKs) of plasma oxycodone following oral administration. This study was a two-part design including a multi-ascending dose (part A) and a bioequivalence (BE) study (part B) in healthy volunteers. In part A, 24 subjects were randomized 3:1 to receive PF614 (50, 100, or 200 mg, n = 6/cohort) or OxyContin (20, 40, or 80 mg; n = 2/cohort) in ascending cohorts, delivered every 12 h for a total of nine doses. In part B, 60 subjects randomized in a four-way crossover to evaluate BE, received PF614 100 mg and OxyContin 40 mg in fasted and fed (high-fat diet) states. All subjects were naltrexone blocked prior to first study drug administration to protect against opioid-related adverse effects; repeat doses were provided on days 1-5. In part A, PF614 was well-tolerated following twice daily doses of up to 200 mg for 5 days. Plasma oxycodone maximal plasma concentration and area under the concentration time curve increased linearly with increasing doses. Part B showed that plasma oxycodone BE was achieved following 100 mg PF614 or 40 mg OxyContin under both fasted and fed conditions. Additionally, PF614 provided similar oxycodone exposures following both fasted and fed states. This study confirms findings from our single-ascending dose study, showing that PF614 100 mg releases oxycodone with a PK profile comparable to 40 mg OxyContin under both fasted and fed conditions and with a similar safety profile under naltrexone-blocked conditions.


Oxycodone , Prodrugs , Humans , Administration, Oral , Analgesics, Opioid , Cross-Over Studies , Healthy Volunteers , Naltrexone/adverse effects , Prodrugs/adverse effects , Therapeutic Equivalency
18.
Eur J Anaesthesiol ; 41(5): 381-390, 2024 May 01.
Article En | MEDLINE | ID: mdl-38445365

BACKGROUND: Delays in treating anaesthesia-induced malignant hyperthermia increase risks of complications and death. NPJ5008 is a novel formulation of the indicated treatment, dantrolene sodium, developed to shorten preparation and administration times compared with the reference formulation Dantrium®. The two formulations have been compared preclinically. OBJECTIVES: Assess bioequivalence of overall dantrolene (free acid) exposure of NPJ5008 versus Dantrium® and ascertain similarities in their pharmacokinetics and safety/tolerability profiles. Evaluate preparation/administration time savings for the new formulation. DESIGN: Part 1 of this open-label trial in humans was a 1 : 1 randomised crossover study; part 2 was a single-arm study. Trial pharmacy data and laboratory simulations assessed preparation/administration step timings. SETTING: Single clinical centre in the UK, April to July 2021. PARTICIPANTS: Twenty-one healthy male and female individuals. INTERVENTIONS: Part 1: single intravenous 60 mg dose of NPJ5008 or Dantrium®, sequentially. Part 2: single intravenous 120 mg dose of NPJ5008. Simulation: five vials per formulation using paediatric and adult cannulas. MAIN OUTCOME MEASURES: Overall drug exposure to last measurable concentration (AUC 0 to last ) and extrapolated to infinity (AUC 0 to ∞ ) were primary endpoints. Other pharmacokinetic, clinical and muscle-function parameters, and adverse events, were monitored. RESULTS: Adjusted geometric mean ratios of NPJ5008 versus Dantrium® were 90.24 and 90.44% for AUC 0 to last and AUC 0 to ∞ , respectively, with the 90% confidence intervals (CI) within the 80 to 125% acceptance interval, establishing bioequivalence. No new safety issues emerged: any adverse events were of a similar magnitude across treatments and related to pharmacological properties of dantrolene. Pharmacy and simulation data revealed that every step in preparation and administration was 26 to 69% faster for NPJ5008 than Dantrium®. CONCLUSION: NPJ5008 showed comparable pharmacokinetic and safety profiles to Dantrium®, while reducing dantrolene dose preparation/administration times, potentially reducing patient complications/healthcare resourcing in malignant hyperthermia. TRIAL REGISTRATION: EudraCT Number: 2020-005719-35, MHRA approval.


Dantrolene , Malignant Hyperthermia , Adult , Humans , Male , Female , Child , Dantrolene/adverse effects , Biological Availability , Malignant Hyperthermia/diagnosis , Malignant Hyperthermia/drug therapy , Healthy Volunteers , Therapeutic Equivalency , Cross-Over Studies , Area Under Curve , Administration, Oral
19.
Sci Rep ; 14(1): 7071, 2024 03 25.
Article En | MEDLINE | ID: mdl-38528026

Etomidate is a sedative and hypnotic drug through intravenous administration that act on the central nervous system through GABA (Gamma-Amino Butyric Acid) receptors, which is widely used in anesthesia induction and maintenance and long-term sedation in severe patients. The study aimed to evaluate the pharmacokinetic and pharmacodynamic properties of two etomidate fat emulsions after administration through the intravenous infusion pump in healthy Chinese subjects. A randomized, open-label, 2-period crossover study was performed in 52 healthy subjects. The wash-out period was 7 days. Blood samples and pharmacodynamic index values were collected at the specified time points. Etomidate concentrations were measured using validated liquid chromatography-tandem mass spectrometry. Pharmacokinetic parameters were analyzed using a non-compartment model method. Pharmacodynamic parameters were calculated using pharmacodynamic index values. The study also evaluated the safety of the etomidate. Both the pharmacokinetic parameters and pharmacodynamic parameters result of the test and reference formulation were very similar. The 90% confidence intervals (CI) of the geometric least-squares mean (GLSM) ratios of the test to reference formulation were 91.33-104.96% for the maximum plasma concentration (Cmax), 97.21-102.03% for the area under the plasma concentration time curve from time 0 to the time of the last measurable concentration (AUC0-t), and 97.22-102.33% for the area under the plasma concentration time curve from time 0 to infinity (AUC0-∞). Meanwhile, the 90% CI of the GLSM ratios of the test to reference formulation were 102.28-110.69% for the minimal BIS value (BISmin), 99.23-101.17% for the area under the BIS time curve from time 0-60 min after administration (BISAUC0-60 min), respectively. The 90% CI of these pharmacokinetic and pharmacodynamic parameters all fall in the accepted bioequivalence range of 80.00-125.00%. No serious adverse events occurred during the study. This study has shown that the etomidate fat emulsion test and reference formulation had similar pharmacokinetic and pharmacodynamic characteristics in vivo. The two formulations exhibited good safety and well-tolerance.Clinical trials registration number: http://www.chinadrugtrials.org.cn/index.html . # CTR20191836.


Etomidate , Humans , Area Under Curve , China , Cross-Over Studies , Etomidate/pharmacokinetics , Etomidate/pharmacology , Healthy Volunteers , Hypnotics and Sedatives/pharmacokinetics , Hypnotics and Sedatives/pharmacology , Tablets , Therapeutic Equivalency
20.
Stat Med ; 43(7): 1475-1488, 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38316492

The regulatory EMA's reference scaled average bioequivalence (RSABE) approach for highly variable drugs suffers from some type I error control problems at the neighborhood of the 30% coefficient of variation (CV), where the bioequivalence (BE) limits change from constant to linearly scaled. This paper analyses BE inference methods based on the "Leveling-off" (LO) soft sigmoid expanding BE limits that were proposed as an appealing surrogate for the EMA's limits and compares both approaches, on the replicated and partially replicated crossover designs. The initially proposed version of the LO method also has type I error inflation problems, albeit attenuated. But given its more mathematically regular character, it is more suitable for analytical corrections. Here we introduce two improvements over LO, one based on the application of Howe's method and the other based on correcting the estimation error. They further reduce the type I error inflation, although it does not disappear completely. Finally, the effect of heteroscedasticity on the above results is studied. It leads to inflation or deflation of the type I error, depending on the design and the type of heteroscedasticity (variability of the test product greater than that of the reference product or the opposite). The replicated design is much more stable against these effects than the partially replicated design and maintains these improvements much better.


Therapeutic Equivalency , Humans , Sample Size , Cross-Over Studies
...